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synopsis 
Relaxation times in polydisperse polymers were calculated on the basis of more real- 

istic viscosity mixing rules than have previously been used. These relaxation times and 
mixing rules are in turn used to calculate viscoelastic functions such as stress relaxation 
following sudden straining or steady shearing. Inversion of these functions provides an 
accurate way to estimate the molecular weight distribution. This method is useful for 
insoluble or otherwise intractable polymers. 

INTRODUCTION 

Previous studies by Menefee and Peticolas' and Peticolas2e3 indicated 
that it is possible to write approximate expressions for the stress relaxation 
of bulk polydisperse, amorphous polymers above their glass transition 
temperature and to invert these expressions to obtain the molecular 
weight distribution. Mathematical difficulties encountered in that work 
necessitated a simplified treatment that was not altogether satisfactory. 
The present paper gives a more exact and complete treatment of the rela- 
tion between stress relaxation and molecular weight distribution and 
provides new and simple interconversions between the distribution of 
relaxation times and the distribution of molecular weights. These rela- 
tions should be of practical value for the characterization of many poly- 
mers, particularly those that are insoluble or otherwise intractable. 

EFFECT OF ENTANGLEMENTS ON THE RELAXATION TIME 

For a free-draining polymer, the relaxation time of the pth normal mode 
was given by Rouse4 as 

b2fo P =  b2fOM2 
24 kT 2(N 4- 1) 6r2kTMS2p2 

TP = - csc2 

where b is the r.m.s. average of the length of a submolecule, M, is the 
molecular weight of a submolecule, fo is the submolecule friction factor, N 
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2216 MENEFEE 

is the number of submolecules in the entire molecule, and M is the molecular 
weight of the entire molecule. The ,submolecule frictioh factor is related 
to the monomeric friction coefficient To by the expression 

f o  = !IT0 (2)  
where q is the number of monomers in a submolecule. For a monodis- 
perse polymer solution, Rouse gave for the real part of the complex viscosity 

cRT  TP 
7 = 7 s + y  p = l  c 1 + w2rp2 (3)  

where qs is the solvent viscosity, c is the polymer concentration in g/cc, 
and w is the angular frequency of dynamic oscillation. 

In  the absence of entanglements, the unknown friction factor fo and 
the mean square length b2 in eq. (1) are eliminated by summing eq. (3)  
with w = 0 to find 70, then solving for byo. To sum, the following identity 
is used: 

2 N p* = - N ( N  + 2). 

2(N + 1) 3 
c csc2 

P = = l  

Using b2fo thus found in eq. (1) yields for r 

4N2 
2(N + 1) - p2& 

For N large enough so that csc2 p* - 

(4)  

Since there is no solvent, the free-draining results should be applicable 
to bulk polymers. This extension to the bulk case is feasible only because 
the relaxation times are determined in terms of the bulk viscosity: 

At low molecular weights, the viscosity qo of a monodisperse bulk polymer 
is proportional to Ma, where (Y is between 0.8 and 1.8.6 At a higher 
molecular weight M,, uninhibited molecular movement ceases and the 
coiling molecules interfere with each other through temporary entangle- 
m e n t ~ . ~ ~ ~ ~ *  This causes the viscosity to depend on a much higher power 
of molecular weight, between 3 and 4,  but usually taken to be 3.4. Ferrys 
gives the following description of the effect of molecular weight on the 
friction factor: 

"The well-known fact that, experimentally, 7 / M  is not constant implies 
that the average friction coefficient fo changes with molecular weight; it 
increases with M ,  presumably because the loosening effect of free molecular 
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ends is gradually eliminated. Eventually, with increasing M ,  the effect 
of free ends disappears asymptotically, being proportional to 1 / M .  Quali- 
tatively, when the molecular ends are far enough apart, the average poly- 
mer segment is oblivious of their existence. Then fo should become inde- 
pendent of molecular weight, and there is good experimental evidence that 
it does. Meanwhile, entanglement coupling has set in, so q / M  is still 
not constant, but for a different reason: the frictional resistance to long- 
range motions, which primarily determine q as well as the viscoelastic 
behavior at long times, is strongly influenced by the entanglements. But 
the shorter rangc modes of motion are oblivious of the entanglements, 
and are governed by an fo which is independent of M." 

By a purely empirical argument, Ferry, Landel, and Williamss modified 
the friction factor in eq. ( 1 )  to take into account the entanglement effect. 
They assumed that when the mode number p is greater than p ,  = M / 2 M e ,  
the friction factor is fo; when p is less, the friction factor becomes equal to 
f, given by the following expression for monodisperse polymers: 

f = (g)2.4 
In  this hypothesis, M e  is the molecular weight of segments long enough to 
be involved in entanglements. The assumption has been made that 
M, = 2M,, although Porter, MacKnight, and Johnson'O have shown 
that there may be no such simple equivalence at all. However, we will 
retain this particular assumption since no great error is introduced in 
pract.ica1 situations. 

For reasons of internal consistency that appear when considering the 
rubbery modulus as derived from expressions for stress relaxation followv- 
ing sudden straining, it is necessary to modify the Ferry, Landel, and 
Williams assumption that the critical mode p ,  occurs at M / 2 M , .  As 
will be shown later, in order for the rubbery modulus to be equal to cRT/M,,  
consistent with rubber elasticity theory, the critical mode index must be 
p ,  = M / M , .  In agreement with'this new definition of p,, we also use a 
revised expression for f/fo: 

- f = (3". 
fo (9) 

For most situations of interest, the molecular weight is so high that this 
alteration of the Ferry, Landel, and Williams definition of p ,  and of f 
makes no difference whatever. 

For a monodisperse polymer, the relaxation time (including entangle- 
ments) can be converted to macroscopic variables by a method analogous 
to the development of eq. (5 )  or eq. (6). We have 
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or, on rearranging the sums, 
N 

M 24kT 

The first sum may be expanded and summed for large N ,  and the second 
sum evaluated using eq. (4) .  This procedure yields the close approxima- 
tion 

36kTM,2 qo = 

where M / M J  has been substituted for N (the maximum number of possible 
modes). Combining eqs. ( 1 )  and (12) yields the following relaxation 
times for monodisperse polymers of molecular weight M :  

and 

where 

If M ,  << M ,  4 reduces to f/fo, and if the first term of the expansion of 
csc2 pu/2(N + 1 )  is used, the relaxation times become identical to those 
given by Ferry, Landel, and Williams*: 

6tloM 
r p  = ~ s2cRTp2 P 6 P e  

and 

P > Pe. 
6VoM 
f r2 - cRTp2 
fo 

rp f  = 

INCORPORATION OF POLYDISPERSITY 
When dealig with polydisperse linear polymers, the viscosity expressions 

used so far have to be modified to include an additional summing over the 
molecular species present. That is, one sums over the viscosity contribu- 
tions of the normal modes of each molecule and then sums the contribu- 
tions of all molecules. How this should best be done is still not completely 
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certain. 
weight fractions: 

The simplest mixing rule is a linear mixing of viscosities by 

Here we have incorporated the familiar expression Gprrpt = q p f  where GPi, 
the modulus of the pth mode of the ith molecule, is taken to be cRT/M, .  
The mixing rule of eq. (18) is most valid for mixtures in dilute solution 
for which the molecular weight dependence of viscosity is nearly first 
power. For bulk polymers, the molecular weight dependence is not 
linear, at least above the critical molecular weight M,.  Taking the com- 
monly accepted relationship 71 = AMwB for bulk polymers and T i  = A M f B  
for monodisperse polymers ( A  is a constant for the particular polymer and 
B is normally close to 3.4), we then have a second mixing rule based on 
the relation M ,  = wtM,: 

i 

According to what has been said of the friction factor, mixing relations 
should reflect some dependence on the critical molecular weight M,. 
For example, a possible mixing rule which takes into account the fact 
that molecules below a molecular weight M ,  will not entangle is the 
following : 

or 

M < M ,  

M > M ,  

AS Eq. (21) shows, this mixing rule involves a linear weighting of viscosity 
contributions from small molecules and a 1/B power weighting of con- 
tributions from all modes in molecules of higher molecular weight. By a 
simple change, this rule may be converted to a form that incorporates 
nearly all the main features peculiar to  polydisperse systems of linear 
molecules. This change involves removal of the high-mode contributions 
of long molecules from the 1/B weighting and placing them with the 
linear weighting. This is justified by their not appearing specifically in the 
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entanglement procesa and therefore being counted simply as separate low 
molecular weight species. This final mixing rule is therefore 

Mi > M ,  

Although the mixing expression of eq. (22) is fairly comprehensive, its 
use is rendered somewhat difficult by the necessity for knowing something 
about the molecular weight distribution. For this reason, the simpler 
expressions of eqs. (18) or (19) will often have to suffice, although some- 
times the use of a known distribution or a general approximation may be 
possible. 

Conti and Giglill have discussed other weighting rules besides the one 
used here which involves weight fractions. The proper mixing methods 
can be determined ultimately by using the method of blends,12 but so 
far no comprehensive study has been made. Some account might also 
be taken of the suggestion of Chompff and Prinsl* that the friction factor 
be variable along the length of a molecule. 

Relaxation Times Using a Linear Mixing Rule 

To average for polydispersity using the linear mixing rule, eq. (18), we 
insert a relaxation time equivalent to  that of eq. (l), and use G,, = cRT/M, 
and N i  = Mi/M,: 

Ni cRT b2fo P =  t o = c w i c - -  csc2 
i p o l  Mi  24kT 2 ( N ,  + 1) 

Solving for b2fo/24kT and reinserting it into eq. (l), we find 

3tOMs2 PU 

2cRT(Mw + 2MJ csc2 
Tpi = 

6toMi2 N 6q&,2 N - u2cRT(MW +- 2Ms)p2 - r2~RTMwp2'  

Equation (23) shows that this procedure is equivalent to combining 
viscosities as a linear function of molecular weight, a procedure not valid 
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for bulk mixing. The relaxation times given by eq. (26) are, however, 
commonly used in stress relaxation calculations. * Since the individual 
frictional properties of a segment are averaged out by using the overall 
viscosity, there is a fortuitous compensation that leads to an essentially 
correct dependence of rpr on M in eq. (26) .  

Incidentally, when the relaxation time of eq. (26) is used to determine 
elastic compliance by the relation 

the usual result14 is obtained: 

To perform the summations required to obtain eqs. (24) and (26) ,  use 
was made of eq. (4 ) .  If eq. (25) is used in eq. (27) to determine J,,  the 
required summation can be carried out by using the identity 

This yields, for the first two terms of the elastic compliance, 

J e = - -  M z  (M,+I + 4 M J .  
5cRT M ,  

Although the second term is normally ignorable, the use of a nonzero 
value for M ,  has the effect of introducing a kind of stiffness to the chain. 
This is known from other considerations, since a polymer molecule in 
which M ,  = 0 would be completely flexible and would show no glass 
transition-dependent behavior a t  short times. 

Relaxation Times Using Nonlinear M ~ g  Rules 

Leaving aside the linear mixing rule, we now use the full mixing ex- 
pression of eq. (22) to derive relaxation times. Taking the relaxation 
times to be like those of eq. ( l ) ,  except including the entanglement factor 
f/fo, we have 

and 

The factor f/fo is taken to  be (M,/Me)2.4,  our modification of the form 
for polydisperse polymers proposed by Ferry, Landel, and Williams? 
However, as we shall see later, there is reason to believe that f/f, should 
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have some dependence on the molecular weight of each molecule and not 
just on an overall average. In  any event, putting these expressions 
into eq. (22)) along with the modulus Gpr = c R T / M ,  we obtain 

where we have let K = b2j,,/6r2kTM,2. The first sum may be written in 
terms of the cumulative weight distribution W ,  as follows: 

c w,M, = iMc MW(M)dM = MwWc 
i 

(34) 

Mi < Mc 
where W ,  represents in this instance the cumulative weighbaverage 
molecular weight distribution up to a molecular weight M,. The main 
problem is that of evaluating the term 

M~ 5 M ,  

Without much overall error we can perform the summation over p as 
though M , / M ,  + w , obtaining the usual result m2/6. We now designate 
the other sum as 

M* = (T w ~ M ; ) ~ .  (35) 

It is more intractable and requires a specific form for the molecular weight 
distribution for its evaluation. In  integral form, M* becomes 

1 B 
M *  = (Jio MB W ( M ) d M )  . (36) 

If we assume a Schulz-type molecular weight distribution of the form 

W ( M )  = uMbe-OM (37) 
and run the integral of eq. (36) from 0 to w , the result is very nearly 

M* 0.647 M ,  + 0.353 Mn. (38) 
Making the lower limit of the integral M ,  instead of 0 complicates matters 
by bringing in an incomplete gamma function; the error of omission is 
unlikely to be very great in any case, especially if M ,  < M,. Hence, we 
will not be far wrong in most cases in using eq. (38) for M*. We can now 
solve eq. (33) for K ,  as follows: 

a 2  
7 0  = cRTK - WcMw + cRTK (0.647 Mw + 0.353 Mn) (39) 

6 6 fo 
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whence 

(0.647 + 0.353 "-)I. (40) 
MW 

This K ,  inserted into the relaxation time expressions of eqs. (31) and (32), 
yields 

and 

r p i  = 6 q o M ~ ~ / r ~ c R T M ~  [W.  + f (0.647 + 0.353 - "91 MW p 2 .  (42) 

STRESS RELAXATION RELATIONS 
For monodisperse whole linear polymers the relaxation of stress after 

cessation of steady-state shearing is obtained by summing the stress con- 
tributions of the various modes of motion: 

where u(t)  is the stress at time t and io is the shear rate before relaxation 
begins. Allowing for entanglements by analogy to eq. (lo), we have 

where Gp = cRT/M, and rp and rp' are given by eqs. (13) and (14)) 
respectively, or, for the simplification that M ,  << M ,  by eqs. (16) and 
(17). Written in full, the expression for stress relaxation after cessation 
of steady shear becomes 

.(t) = -  670 [ "f="" A (- r2cRTp2t) 
€0 r2 p = l  p ex' 6qoM 

When t = 0, eqs. (44) and (45) reduce to o(t = O ) / *  €0 = 70. 
For polydisperse polymers, the stress relaxation expressions are beset 

with the same difficulties encountered in averaging for viscosity. Because 
of similarities in structure of the expressions for viscosity and steady-shear 
stress relaxation, we can consider three kinds of mixing rules for stress 
relaxation by analogy to eqs. (18), (19), and (22): 
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M i / M s  M i / M e  1 B  + c wr c Gptrprle-t/s'i' + [F wr ( c Gpr~pfe-t/rv')B] . (48) 
i p - M i / M e  P =  1 

\ 

M 5 M ,  

Of the relations, only eq. (46) has been used to any extent, although the 
others are more realistic representations. For monodisperse polymers, 
all these expressions reduce to the form of eq. (43). The use of eq. (46) 
implies that entanglement effects are not considered in detail, but rather 
are lumped into the expression by the fact that rpi contains qo, as shown by 
eq. (26). Writing eq. (46) as it has been applied before,' we have 

where 

In terms of II continuous weight distribution of molecular weights, eq. (49) 
becomes 

This expression has been used for determining W ( M )  from stress relaxation 
data1 and will be discussed further later. The expression is also the 
suitable one for polymers with no entanglements; that is, those with 
molecular weights less than M ,  or 2M,. 

To incorporate the details of the entanglement process, we use eq. (48) 
along with the relaxation times from eqs. (41) and (42) and the modulus 
Gpr = c R T / M f .  The result, for stress relaxation after steady-state 
shearing, is 

M i / M s  1 tO%'P' M i / M s  to%%' cRT 1 -= d t )  = { c w , M 1  c ;e Mi' + W f M ,  c :e 
p = M t / M e  p 

\ 
Y 

> L  
P = l  P 
M < Me 

> 

M > M, 
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where 

and 

0.647 + 0.353 - 

f = ( 3 2 . 4  

f o  

(54) 

(55) 

where W ,  is defined by Eq. 34 as MW-l lMc M W ( M ) d M .  If needed, 

eq. (52) can easily be written for a continuous distribution of molecular 
weights. 

The discussion so far has dealt with stress relaxation after steady shear- 
ing, most commonly performed on fluid polymers. However, stress 
relaxation following sudden straining is the usual relaxation measurement 
for solid polymers, or even viscous fluids. For monodisperse amorphous 
linear polymers, the appropriate phenomenologic representation is 

N 
(56) .(t> G( t )  = - = c Gp exp ( - t / r p ) .  

€0 p = l  

This expression, when rp  is written out, becomes 

where we have taken Gp = cRT/M.  The glassy modulus can be found 
by setting t = 0, which yields 

There is no rubbery plateau or rubbery flow region, since there are no 
entanglements. Equation (56) can also be derived by differentiating 
eq. (43) according to the relation16: 

When entanglements do exist, for M > M,, we find, by differentiating 
eq. (44) with respect to time, 

M / M e  M / M s  

p = l  p = M / M e  
G(t)  = c GP exp ( - t l . p )  + c G* exp ( - t / r p ’ )  (60) 
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or, written more fully, 

rr2cRTp2t M / M e  

G(t)  = cRT [ C exp (- ) M p = l  6VoM 

a2cRTp2t )]. (61) 
M / M s  

-k p = M / M e  ( - ~ V ~ M ( M , / M ) ~ . ~  
The glassy modulus, Go, is again found by taking t = 0, and is the same 
as that given by eq. (58). In this case there is a rubbery modulus, 
which is found by summing only the first term of eq. (61) with t = 0, 

cRT G = - -  
Me 

It is this relation that dictates the critical mode number, pe l  as discussed 
previously. Equation (61) will be used later when comparing calculated 
and experimental results. 

The incorporation of polydispersity into the sudden-strain stress relaxa- 
tion modulus expressions brings in some difficulty. From the form of 
eq. (56),  we can see that each term of the sum over p is weighted only by 
Gp = c R T / M .  Hence, depending on the time, each term can contribute 
strongly to G(t) .  This means that for a polydisperse polymer at very 
short times, the problem of how to weight the low molecular weight species 
will become important. We therefore turn immediately to the most 
inclusive form of the steady shear relaxation, eq. (48) or its alternate 
form eq. (52), and differentiate it to  obtain G ( t ) :  

M i / M s  M t / M s  

G( t )  = C w f  C G,, exp ( - t / T p i r )  + C w, C G , ~  exp ( - t / T , i r >  
i v = l  i v = M i / M e  

M > Me 

where rpf  is given by eq. (41) for p < M / M , ,  rp i r  is given by eq. (42) for 
p > M / M e ,  and G,, = cRT/Mt .  

When we set t = 0 in eq. (63),  we obtain for the glassy modulus Go 

Go = ~ CR T + w i M t A ) 2 ‘ 4 ( T  W ~ M ~ - ~ ) - - ~ ] .  (64) 
M.v Me 

M > M ,  

The second term in this expression will be small, so that essentially Go = 

cRT/Ms ,  a result identical with that for a monodisperse polymer, although 
eq. (64) does bring in a weak molecular weight dependence. 
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COMPARISON OF EXPERIMENTAL AND CALCULATED 
RELAXATION MODULUS 

A useful material for testing relaxation expressions is an early NBS 
polyisobutylene sample on which stress relaxation data were obtained 
by Tobolsky and Catsiff.l6 Marvin and Oser” compared the experi- 
mental results at  25°C with a curve calculated from their ladder model 
equations. Results for G(t) calculated from the ladder model are shown 
as the dashed line in Figure 1. Using the same data, eq. (61) was used 
to calculate the solid line on Figure 1. As seen, the agreement with ex- 
periment of both Marvin and Oser’s curve and that of eq. (61) is fairly 
good, with eq. (61) being considerably easier to use than the ladder equa- 
tions. Parameters used in eq. (61) were M = 1.03 X lo6; M ,  = 2Me = 
17,100 (ref. 5); c R T / M e  = 2.65 X lo6 dynes/cm2; c R T / M  = 2.20 X lo4 
dynes/cm2; M / M e  = 117; c R T / M ,  = 1.207 X 10’O dynes/cm2; M / M s  = 
( c R T / M , ) ( M / ~ R T )  = 5.49 x 105.. 

-8 -6 -4 -2 0 2 4 6 
f UG t (seconds) 

Fig. 1. Relaxation modulus G ( t )  of NBS polyisobutylene: Circles, experimental 
data of Tobolsky and Catsiff*l; dashed line, G(t )  calculated using ladder model equations 
of Marvin and Oserm; solid line, G(t )  calculated using eq. (61) of this paper. 
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In spite of the nominally good agreement between calculations and 
experiment, three problems remain. First, in the viscous flow region 
(at times longer than those of the rubbery plateau), the agreement is 
poor because of inadequate incorporation of the molecular weight dis- 
tribution (MWD). We will shortly show how this apparent defect can 
be turned to advantage to give a good idea of the MWD if it is not known. 
Second, the slope of the relaxation modulus in the glass transition region 
is not correct. The Rouse-based theory predicts a slope of - ' / z  on a log 
G(t)-versus-log t plot, and experiment favors a steeper slope of -z/3 to 
-3/4.  If the Zimm relaxation times" are used, this slope will become 
-2/3.19 Rather than say, however, that the deviation from a slope 
of - is due to hydrodynamic interactions (the Zimm nonfree-draining 
case) between small segments, Ferry prefers to attribute it to the failure 
of the concept of an average friction coefficient. The same problem may 
be present to some extent in the later flow region, where a theory by 
Graessleym gives a slope of -0.82 to the high shear rate portion of log 
~ ( i )  versus log 4. These questions are still pending. 

The third problem is exemplified by an objection made by Tobolsky21 
to  the use of the Rouse theory in the glassy region. He correctly states 
that the kind of elasticity exhibited in this region is not entropic in nature, 
as the whole derivation based on Rouse theory dictates. This can be 
seen from two observations. First, if M ,  is calculated from the relation 
Go = cRT/M,, it turns out to be 1.8 for polyisobutylene, an absurdly 
low molecular weight for a statistical segment. Also, the glassy plateau 
is weakly inversely temperature dependent, and not directly proportional. 
This objection does not necessarily interfere with the use of the Rouse 
approach isothermally, because the exact definition of a segment is never 
specifically needed. Tobolsky and Aklonis22 have suggested a modification 
of the Rouse theory for this region that would throw most of the deforma- 
tion energy into rotational modes rather than entropic deformation modes. 
Their formulation for the glassy region is 

N 

G,(t) = Go C ?- exp (-=) N2r1 
p = l  N 

where N is the number of torsional oscillators in the linear molecule, 
though the actual value is not too critical. At this stage, 71 has to  be 
determined experimentally. If we incorporate this rotational contribu- 
tion into eq. (61) for G(t)  of a monodisperse linear amorphous polymer, 
we have 

&RTp2t M / M e  

G(t) = cRT [ C exp (- ) M p = l  6~oM 

(-6n&(MJM)2.4 
M / M s  ?r2cRTp2t cRT 

4- p = ' M / M e  
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where M ,  is redefined as a more realistic segment length, which could pre- 
sumably be determined from temperature studies of G(t) versus t .  Since 
the contribution of each mode in Tobolsky's development has a form 
identical to the original Rouse-like formulation, there is no need to carry 
along parallel developments in the present work. 

DETERMINATION OF MOLECULAR WEIGHT DISTRIBUTION 
FROM STRESS RELAXATION 

Two assumptions are basic to most approaches that attempt a deter- 
mination of the distribution of molecular weights from experimental 
stress relaxation information. They are (1) the establishment of a mixing 
rule and (2) some assumption regarding the molecular weight dependence 
of the entanglement friction factor f/fo. Over the years, one relation for 
the viscosity of bulk polymers has been fairly well established: 

q = AM,a.4. (67) 
The coefficient A depends on the polymer type, the temperature, and the 
shear rate. The exponent 3.4 has this value only at  low shear rates and 
decreases at higher shear rates. There is usually some variability in the 
3.4 value anyway, from polymer to polymer, but we shall take this as the 
average. From eq. (67), we would expect that the same dependence 
would hold for the ith monodisperse fraction of a mixture: 

qt = AMi3.4. (68) 

Thus, combining eqs. (67) and (68), we obtain 

This is the nonlinear mixing rule discussed before. It has been reasonably 
well verified as a suitable mixing rule for bulk polymers by the method 
of blends.12 

Linear Mixing 
In  spite of the presence of more exact mixing rules, especially eq. (69), 

most work done so far to relate MWD to stress relaxation has been based 
on a linear mixing rule of the form 

i 

which is known' not to be true except for dilute solutions, a case we are 
not considering here. There is good reason why we would prefer to work 
with linear mixing, and it is illustrated by the following derivation. Let 
us take the basic steady-flow stress relaxation expression derived from 
Rouse relaxation behavior, using linear mixing' : 
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If for the present we ignore the influence of modes greater than unity 
(not a drastic assumption, it turns out) and write out cp(t) in terms of a 
relaxation distribution, we have 

(72) 
Now, since r = M2/a2,  we have MdM = 1/2a2dr. 
MdM into the right-hand integral of eq. (72), we obtain 

Putting this value of 

which leads immediately to 

2 
CR T W ( M )  = - H ( r ) ,  M = a& (74) 

The simphcity of this expression is easily apparent, and even though its 
correctness may be questionable in detail, it shows the close relationship 
that exists between H ( r )  and W ( M ) ,  a fact that has been observed experi- 
mentally many times. 

Actually, a result very similar to this was obtained by Watkins, Spangler, 
and McKannaqZ3 who were the first to make a calculation of MWD from 
stress relaxation. We will not reproduce their somewhat unwieldy argu- 
ment, but will give a derivation based on the above method. First, 
consider the original Rouse-like relaxation times, from eq. (1) : 

b2foM2 
r p  = 

6 ~ ~ k T M , ~ p ~ ’  (75) 

As before, the assumption is made that the friction factor fo should be 
replaced by another factor that shows molecular weight dependence. 
We shall give it the form 

M B  
f o  + fo (M,) 

by analogy to a similar expression used in preceding developments. Thus, 
we have 

Using this expression along with G, = c R T / M ,  we have, following the linear 
mixing rule, 

M / M e  

c p ~  = lw WM)( p = l  c G,T, exp (-:>M. (78) 
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Again assuming only the first mode to be important, we obtain 

cp( t )  = 1- H ( T )  exp (-:) d r  = 

Taking r = KM*+2,  we have 

d r  = (@ + 2)KM"'dM. 

Substituting this into eq. (79)- and equating under the integrals gives the 
final result 

1 

W ( M )  = @ + 2  - H ( r ) ,  M = ($2 cRT 

Watkins et al. eliminated the K in eq. (80) by adopting the approximation 

where both M ,  and T, are assumed to occur at similar points in their 
respective digtributions. They found that the best value for @ is 1.5 
rather than the 2.4 used by Ferry, Landel, and Williamsa for a related 
friction factor problem. Watkins' results for poly(methy1 methacrylate) 
were quite reasonable, indicating that this semiempirical approach has 
merit. 

In  a more elaborate development, Menefee and Peticolas' inverted the 
original linear mixing relation of eq. (71) and obtained W ( M )  as a function 
of cp(t) rather than H(7) .  If all the modes in p are retained, it is found 
that no simple association can be made between the r of the relaxation 
distribution integral and the multiple r values in the integral over molecular 
weight. Menefee and Peticolas therefore performed an initial inversion 
based on a theorem of Moebius to get rid of the modal sum over p and then 
a second inversion of the resulting Laplace transform expression to obtain 
W ( M ) .  The Moebius inversion of eq. (71) gives 

and the final result is 

where 



2232 MENEFEE 

The p’s are the Moebius p-function terms, defined as equal to +1 if n is 1 
or if n is factorable into an even number of unlike primes, equal to - 1 if n 
is factorable into an odd number of unlike primes, and equal to zero for 
all other n values. For example, the first few terms for p ( n )  are 1, -1, 
- l , O ,  -1, 4-1, - 1 , O , O ,  etc. 

Equation (82) can be cast into a more compact form as follows: 

W ( M )  = 2- c p(n)H(n%) M = uT1’z. 
cRT 

For the first few terms we have then 

Taking only the first term on the right side gives eq. (74). 

Peticolas2 took only the first approximation to eq. (81), in the form 
In an experimental verification of some of the preceding developments, 

Using the fact that the cumulative Z-distribution is defined as 

Equation (86) can be written as 

In this form, Peticolas2 found good agreement with experimental data 
for a linear polyethylene, but poor agreement with data for a polystyrene. 

Nonlinear Mixing 
Once a miXing rule has been adopted, it seems probable that most of the 

remaining problem lies in how the entanglement facter f is handled. 
Ferry, Landel, and Williamss adopted the relation 

which reduces to fo(M/2Me) 2 * 4  for monodisperse polymers. For poly- 
disperse polymers, this expression has the disadvantage that it includes 
no details of the entanglement process. That is, one would expect that 
the friction factor would depend both on M ,  the individual molecular 
weight, and some average ( M ) ,  of the whole polymer. We recall that 
Watkins et a1.2S found a 1.5 power dependence on M 1  of the friction factor. 
Hence, using as before M e  instead of 2Me, a general form of the friction 
factor might be taken as 
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where a is an adjustable parameter denoting the sensitivity off  to the 
individual molecule and may have some relationship to the corresponding 
friction factor in dilute solutions, where average properties become less 
important. In actual fact, we would expect the true form of a friction 
factor to be much more complex than that shown by eq. (W), though it 
expresses the main points. Ferry et a1.8 have taken (M) ,  = M ,  and 
and a = 0, so we may also consider this substitution of M ,  for (M),, 
though we retain a nonzero a : 

The following relations will be taken as a starting point for an analysis 
similar to'that leading to eq. (52), except that we ignore higher modes and 
low molecular weights: 

cRT G = -  
pt M ,  

q = AM,3.4 
1 1 

i 

- 
q3.4 = c W i r 1 P  

Summing the viscosity expression 

allows us to eliminate the unknown factors in rpf  with the result 

KM;"+* - 6qM:'" 
u2cR TMWaM *p2 P 2  

T p i  = 

where 

The steady-flow stress relaxation then becomes 

or, in integral form, 
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where 

(101) 
K M ~ + "  =- 6qM2+" 

7 p  = 
uzcRTMwaM *pz PZ 

By defining another distribution function, F ( r ) ,  we can write eq. (100) as 
1 B-W 

X d M .  (102) 

The sum over p may be written out and expanded in the form 

yielding 

+ 0.0735 exp (- y) - 0.00649 exp (-y) + 
8 294t 

0.0327 exp (- ,) + . . - ] d M .  (103) 

This may be cast into a shortened form as follows: 

- 0.006491(21.4t) + 0.03271428.2t) + * * * ] (104) 

where we have set 
I+" 

I(1) = Jm 0 M x  W ( M )  exp ( --4)dM. 3.471 

Hence, the inversion may be carried out by solving for I ( t )  and resubstitut- 
ing appropriate terms: 

1 

(u2M(aM*)n I ( t )  = +( t )  - 0.07354(11.21) 

+ 0.006494(21.4t) - 0.03274(28.25) + . * . .  (106) 

We can now make use of the following property of the distribution function: 
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This may be used to reduce eq. (106) to the form 

= Lm [ F ( T )  - 0.823F(11.27) + 0.1389F(21.4~) 

Setting 

we can reduce eq. (108) in the same way that eq. (79) was handled, with 
the final result 

2L4 

M3.4 W ( M )  = (2 + ~)(g-' T[F(T) - 0.823F(11.27) 

+ 0.1389F(21.4~) - 0.922F(28.2~) + * * * ] (110) 
where 

&RTM QM* )Q+zrQ+2. 2- 
M = (  20.4 q 

F ( T )  can be determined by standard inversion methods from 
1 

4(t) = [ ~ ( t ) ] ~  = lm F ( T )  exp (-s) dr  

= J:m TF(T)  exp (-:)d In 7. (112) 

Under usual circumstances, an adequate expression for W ( M )  should 
be obtainable from eq. (110) by using only the first term of the distribution 
function: 

M2*4'3*4 W ( M )  g (2  + O!) TF(7). 

The only snag to the use of the above expressions is the necessity for 
knowing M *  from eq. (98), which itself depends on the molecular weight 
distribution. For a Schulz distribution given in eq. (37), M* may be 
evaluated approximately : 

(114) 
1 
2 

M* = M ,  - - (1 + a) (1 - s)(M, - M,J .  

It is unfortunately not possible to perforQ a bootstrap calculation and 
use a first approximation W(M),to determine a value for M*, and so on. 
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This is because of an identity involving eqs. (98) and (108) (with t = 0). 
Hence, as eq. (114) indicates, some knowledge of an additional molecular 
parameter such as M ,  is necessary, though fortunately the shape of W ( M )  
is not greatly sensitive to  M* (or vice versa). 

Using the experimental data of Fujita and N i m ~ m i y a ~ ~ , ~ ~  for a poly- 
styrene sample at 135”C, we have computed W ( M )  for three values of 
a: 1.0, 1.5, and 2.0. First, their experimental stress relaxation data, 
obtained as E(t), was converted to G(t) by dividing by 3. It was then inte- 
grated to determine cp(t) and vo. M ,  was computed from qo using the 
relation given by Fox and Loshaek.Ssz6 M* was calculated from eq. (114), 

W O  

lo Id4- 

I 

. d.1 

a= 2 

I 
lo4 lo5 / 

1 6 ~ .  - . . . 
M O L E  C UL 4 p W E I G H T  

I 
lo4 lo5 / 

1 6 ~ .  - . . . 
M O L E  C UL 4 p W E I G H T  

6 

Fig. 2. Comparison of experimental weight distribution of molecular weight with that 
calculated from stress relaxation: Solid lines, experimental data from Fujita and Nin- 
omiya24. 2s; broken lines, calculations made using eq. (113) of this paper. 

using the most probable molecular weight distribution for the polystyrene, 
for which M ,  = 2M,. The parameters needed to calculate W ( M )  are 
then M ,  = 3.57 X lo5; qo = 6.58 X lo8 poises; and cRT = 3.415 X 1Olo 
cgs units. F(7)  was calculated from +(t)  = [cp(t)]1’a-4 by the second-order 
approximation method of Schwarzl and Staverman.% 

Of the three values for a chosen, the results for a = 1.5 (Watkins’ 
original value2a) were best, as shown in Figure 2, where the calculated 
curve is compared with Fujita and Ninomiya’s experimental values25 for 
W ( M ) .  Although the agreement is not perfect between the W ( M )  from 
stress relaxation and that measured experimentally, it is reasonable in 
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view of improvements that might be made in choosing a, making better 
calculations to obtain F( T), and perhaps improving the experimental 
stress relaxation and MWD curves. The unusual variation in W ( M )  
shown by the method of Fujita and Ninomiya** at  low molecular weights 
is eliminated, and also the present method meets Chompff’s criterion13 
that a suitable stress relaxation theory for polydisperse polymers must be 
based on a correct description of the relaxation behavior of a monodisperse 
polymer. 

In examining the calculated and observed MWD in Figure 2, we note 
that the agreement might apparently be improved if a were permitted 
to  increase from 1.5 at lom7er molecular weights to 2 or possibly 2.4 at 
higher molecular weights. This is reminiscent of the observation by’ 
GraessleyZ9 that a nonuniform friction coefficient might be required to 
describe entanglement coupling in polydisperse systems. In this con- 
nection, it would be desirable to invert Graessley’s viscoelastic theoryz9 
to obtain MWD along the lines of the present paper. How best to proceed 
in this direction is, however, not clear a t  this time. 

SUMMARY 

By averaging molecular properties according to whether a segment is 
capable of participating in entanglements or not, it is possible to modify 
Rouse-based viscoelastic theory to give good experimental agreement for 
stress relaxation following sudden straining or steady shearing, and also 
to invert the stress relaxation relations to  calculate molecular weight 
distribution from the terminal relaxation data of amorphous linear poly- 
mers. 

Central results of this paper are the following: 
M o n d i r s e  Polymers. Relaxation times: eqs. (13) and (14), or 

(16) and (17); stress relaxation after steady flow: eq. (45); stress relaxa- 
tion after sudden strain: eq. (61). 

(a) Linear mixing rule [eq. (18) ]-relaxation 
times: eqs. (15) and (14), or (16) and (17); stress relaxation after steady 
shear: eqs. (49) or (51); MWD from relaxation distibution eqs. (74), (go), 
or (85). 

(b) Nonlinear mixing rule [eqs. (19) (simplest) or (22)]-relaxation 
times: eqs. (41) and (42); stress relaxation after steady shear: eq. (52ff); 
stress relaxation after sudden strain: eq. (63); MWD from relaxation 
distribution: eq. (113). 

These results provide usable methods for describing the relaxation be- 
havior and determining the MWD for linear amorphous polymers within 
the framework of Rouse-type normal coordinate theory. Further im- 
provements may be made by way of introducing chain branching and 
crosslinking, as well as by incorporating methods for dealing with semi- 
crystalline polymers. 

Polydisperse Polymers. 
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